
The Data Virtuality Logical Data Warehouse (LDW) is a step up in the evolution of data warehousing, combining the
best of ELT/ETL and data virtualization in a single, comprehensive data management solution. This combination allows to
retrieve data using a single query language, get speedy query response, and to quickly assemble different data models
or views of the data to meet specific needs. Physical data integration is a robust feature of the Logical Data Warehouse
that ensures fast query response while decoupling performance from the source data stores and moving it to the logical
data warehouse repository. In this manner, the effort-intensive physical transfer of the data is minimized and simplified,
effectively removing lengthy data movement delays from the critical path of data integration projects. The final result is
easy data access without fundamentally changing the existing environment.

There are three essential elements to the Data Virtuality Logical Data Warehouse: Data virtualization, Caching, and
Materialization (automated ETL).

Data virtualization offers a lot of flexibility. It quickly provides initial results and supports rapid
prototyping and agile development. Also, real-time data can be queried from various data
sources in different data formats without copying and physically moving the data beforehand.
However, data virtualization on its own does not scale well for large amounts of data or large number of users.

To compensate for that, many data virtualization solutions, incl. Data Virtuality use caching to increase the
performance of the queries. But, caching only solves performance challenges for smaller datasets. For larger
datasets, caching is not adequate as it leaves with very little control and flexibility to how the data is loaded and
stored. Furthermore, caching falls short when it comes to batch data import, data historization, complex multi-
step data transformations, and dealing with large amounts of data.

Materialization, enabled by the automated ETL capabilities of Data Virtuality, scales beautifully and provides
abilities for semantic business-friendly data element naming and modeling. High performance is ensured and
data historization can be facilitated. But, on its own, it lacks agility and real-time data access.

Conclusion: The combination of these three technologies gives the flexibility and high performance needed to serve
various use cases of financial services institutions.

Further essential functionalities of the Logical Data Warehouse that empower your use cases are:

•	 200+ integrated connectors which give immediate access to any data source or system, even in real-time is a
powerful enabler for many modern digital use cases. Data Virtuality provides full maintenance service for all connectors
so you can solely focus on your main work.

•	 Even complex data transformations can be done with procedural SQL

DATA VIRTUALITY LOGICAL DATA WAREHOUSE
The High-Performance Data Virtualization Solution

DATASHEET

How Data Virtuality Works


By just using SQL, the data from
all connected data sources can be
queried in a business intelligence
(BI) tool like Tableau, Cognos, and
Looker.


Data Virtuality Server parses the
query using a built-in SQL
processor and is able to identify
which logical data model parts are
involved (regardless if query is di-
rected to the logical layer or direct-
ly to the data sources).


Query plan is built and optimized
by effectively distributing the exe-
cutions across the connected data
sources. In the actual execution,
the query is split across the inter-
face modules that are responsible
for getting partial data from the ap-
propriate data sources and trans-
forming it to the relational format.


The partial results coming from the
Interface Modules are then further
processed (joined, aggregated,
projected, etc.) by the Execution
Engine and returned to the reques-
ting BI tool. The Execution Engine
can optionally cache data in me-
mory or on disk as needed to im-
prove performance.


In addition, the Self-learning Performance Optimization Engine analyzes data and the data sources’ statistics as well as the relevance of the
query and recognizes performance bottlenecks. Furthermore, it eliminates bottlenecks by automatically creating and managing the physical
data structures in the analytic storage (an external source like PostgreSQL, Oracle, SAP Hana, etc.) by utilizing the Data Replication Compo-
nent. Data can be kept up-to-date by scheduling the replicating on a regular basis, and the amount of replication data can be reduced by
running incremental replications, and capturing change data from databases, for example.

Once data is physically available in the Analytic Database, all of the slow BI query parts are automatically redirected to that database
without rewriting the reports.

11

12

Security Layer through Authentication

D
at

a
Vi

rtu
al

ity
 S

er
ve

r

SQL Parser / Processor

Data Governance / Data Lineage / Usage Audit Layer

Logical Data Model Management

Execution Engine
optimizes and executes distributed queries

In-Memory
Disk Caching

Self-learning
Performance
Optimization

Engine

Scheduler
Module

Data Replication
Engine

Interface Modules

Oracle Hadoop MongoDB Web Services

Data Virtuality
Studio

(Developer Tool)

Web Interface
w/Business Data Shop
& Metadata Catalog

Web Admin
w/Performance

Monitoring

Looker, Tableau,
PowerBI, Excel, etc.

Analytical
Storage

Config DB Meta-
data Repository

SQL Database Big Data NoSQL
REST, SOAP,
SaaS, etc.

SQL
Query 

SQL
Query 

SQL
Query 

SQL
Query 

JDBC,
ODBC,
REST

SQL
Query

SQL
Query

Data

Data

 

 





  





 



��

��

DATA VIRTUALITY SERVER
	. Windows Server 64bit
	. Linux 64bit (Redhat, CentOS, Ubuntu, and others)

DATA VIRTUALITY STUDIO
	. Windows 64bit
	. Linux 64bit
	. Mac 64bit
	. SQL Editor code completion on column level
	. Metadata dependency viewer (Data Lineage)
	. Metadata catalog and search
	. Graphical view builder
	. Wizards for easily connecting generic data (files/

(S)FTP/S3/Webservices) using formats XML, JSON,
CSV, xSV.

	. Wizard for querying Google Analytics APIs

BUSINESS DATA SHOP
(self-service web interface)
	. Metadata catalog and search
	. Self-service data access for business users
	. Write and run queries
	. Download data

DATA FEDERATION
	. Cross-database joins
	. Nested loop
	. Merge join
	. Dependent semi-join
	. Cross-database unions
	. Cross-database SELECT INTO, INSERT INTO
	. Dynamic cost-based query optimization

DATA GOVERNANCE
	. Automatic data lineage
	. Column-level data lineage
	. Column masking

SQL DIALECT
	. ANSI-92 with extensions
	. DDL, DML, procedural SQL
	. Nested subqueries
	. Common Table Expressions (CTEs)
	. Window functions/Framing clauses
	. XML/JSON parsing
	. Web service access
	. Scripting languages (server-side javascript)
	. Native query syntax

ACCESS DATA
	. Via JDBC
	. Via ODBC

	. Windows (32bit/64bit)
	. Linux (unixODBC 32bit/64bit)
	. Mac (unixODBC 32bit/64bit)

	. Via REST API (REST-JSON)

DATABASES AND CONNECTORS
	. More than 200 ready-to-use connectors. All our

connectors can be found here

Logical Data Warehouse Features

https://datavirtuality.com/connectors/

Message: info@datavirtuality.com Visit: datavirtuality.com Request Demo: demo@datavirtuality.com

MOVE AND EXPORT DATA
	. One query language: SQL
	. Permission-based INSERT, UPDATE, DELETE state-

ments on all relational databases, Salesforce, SAS
	. Push-export via FTP, SFTP, SCP, email, S3, Azure Blob

storage, web services (REST, SOAP, plain HTTP), file
system and others

	. Export data using Data Virtuality Studio/SQL

SECURITY, AUTHENTICATION, AUDIT
	. Row-based security
	. Git integration
	. Built-in user/role based permission system
	. Permission granularity on schema, table, column level
	. LDAP authentication (Active Directory, ForgeRock,

etc.)
	. History of changes (versioning) for all custom meta-

data
	. Access to audit information and usage statistics using

SQL from external tools
	. Security protocols: SSL/TLS, HTTPS

STRUCTURE OPTIMIZATION
	. Materialized source tables and (virtual) views
	. Precalculated joins
	. Precalculated aggregations
	. Automatic index creation

MATERIALIZATION ALGORITHMS
	. Full copy (used with materialized tables, views, joins,

aggregations)
	. Incremental replication based on timestamp/id fields

(used with materialized tables and views)

JOB TYPES
	. Full copy with different cleanup options
	. Batch update (optionally with overlap cleanup)
	. History update (slowly changing dimension type 2)
	. Upsert with optional surrogate keys
	. Custom SQL jobs
	. External programs and scripts

SCHEDULE TYPES
	. Once with optional delay
	. On time interval (every X minutes, hours etc.)
	. Daily at certain times of day
	. Weekly on certain weekdays
	. Monthly
	. Using custom cron expressions
	. Depending on other jobs or schedules (on success/

failure/always)

IN-MEMORY CACHING FOR EVEN FASTER
RESPONSES
	. Session scope
	. User scope
	. Virtual database scope

WHAT ELSE?
	. Change Data Capture (CDC) for selected data

sources
	. Mail notification on job and replication status
	. Multi-tenancy
	. Graphical web-based performance monitoring
	. Password encryption
	. Smart data movement approaches (Snowflake &

Redshift S3 load, Azure DWH Blob storage load,
Salesforce Bulk API)

	. Programmatic access to all server functionality using
Data Virtuality Management API

About Data Virtuality

Data Virtuality provides data integration solutions that help
companies to easily connect and manage their data from mul-
tiple data sources such as APIs, databases and flat files. The
revolutionary single source of data truth platform combines
data virtualization and automated ETL. In this way not only is
data management simplified but data integration efforts are
significantly reduced - by up to 80%.

